Abstract
Rubella virus (RV) is an enveloped RNA virus that causes systemic infections in humans. More importantly, first trimester in utero infection leads to a collection of devastating birth defects known as congenital rubella syndrome. Epithelial cells are the first line of defense against viruses and consequently, the polarity of virus secretion is an important factor affecting viral spread. As a first step toward understanding how RV interacts with epithelial cells, we have examined the release of RV-like particles and virions from polarized cells in culture. RV structural proteins were targeted to the Golgi complex and virus particle formation occurred on intracellular membranes in three different polarized epithelial cells. Polarized cells could be infected from the apical and basal membranes, indicating that receptors are not confined to one surface. The secretion of virus-like particles and infectious virions varied according to cell type. In two of the three polarized cell lines examined, virus was released primarily from the apical surface, but significant quantities were also secreted from the basolateral membrane. Release of virus from the apical surface may facilitate virus spread from person to person, whereas basolateral secretion could be important for establishing a systemic infection and/or crossing the placenta prior to fetal infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.