Abstract

Annexin V (ANXV), mostly characterized by its ability to interact with biological membranes in a calcium-dependent manner. ANXV interacts mainly with phosphatidylserine (PS), for that fluorescent ANXV widely produced and used as a sensitive and specific probe to mark apoptotic cells or any PS-containing bilayers membranes. Many reports described the prokaryotic expression of recombinant human ANXV. To overcome some of E.coli expression limitations, we aimed in this work to investigate unconventional alternative expression system in mammalian cells for producing secreted human ANXV in fusion with the super folder green fluorescent protein (sfGFP). HEK239T cells were transfected using polyethylenimine (PEI) and pcDNA-sfGFP-ANXV plasmid. Forty-eight hours post transfection, direct fluorescence measurement, immunoblotting and ELISA confirmed the presence of secreted sfGFP-ANXV in cells supernatant. The yield of secreted 6 × His-tagged sfGFP-ANXV after affinity purification was estimated to be around 2µg per 1ml of cells supernatant. The secretion system was proper to produce a fully functional sfGFP-ANXV fusion protein in quantities enough to recognize and bind PS-containing surfaces or liposomes. Besides, biological assays such as flow cytometry and fluorescent microscopy confirmed the capacity of the secreted sfGFP-ANXV to detect PS exposure on apoptotic cells. Taken together, we present mammalian expression as a quick, affordable and endotoxin-free system to produce sfGFP-ANXV fusion protein. The secreted sfGFP-ANXV in eukaryotic system is a promising biotechnological tool, it opens up new horizons for additional applications in the detection of PS bearing surfaces and apoptosis invitro andinvivoassays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.