Abstract

Objectives: This study was undertaken to compare gut hormone secretion between high-fat-fed and control rats, and to examine the corresponding changes in the expression of sweet taste receptors and glucose transporters in the small intestine and hypothalamus. Methods: Four-week-old male Sprague Dawley rats were fed a standard or high-fat diet for 8 weeks (10 in each group), followed by an oral glucose tolerance test (50% glucose solution, 2 g/kg). Blood was sampled for glucose, insulin, glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY) assays. One week later, small intestinal and hypothalamic tissue were analyzed for sweet taste receptor and glucose transporter expression by real-time PCR. Results: After oral glucose, plasma GLP-1 concentrations were higher in high-fat-fed than standard-fat-fed rats (group × time interaction, p < 0.01) with significant differences at t = 15 min (p < 0.01) and 30 min (p < 0.05). Plasma PYY concentrations were lower in high-fat-fed than control rats at t = 0, 15 min (p < 0.05, respectively) and 120 min (p < 0.01). There were no differences in the expression of sweet taste receptors or glucose transporters between high-fat-fed and control rats in the duodenum, ileum, or hypothalamus. Conclusions: Changes in GLP-1 and PYY secretion after a high-fat diet appear unrelated to any changes in the expression of sweet taste receptors or glucose transporters. Impaired PYY secretion with high-fat feeding suggests that PYY analogues may provide a potential therapy in the treatment of obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call