Abstract
Choroid plexus epithelial cells secrete numerous biologically active neurotrophic factors, which may be beneficial to the transplantation site. Encapsulated cells are often used in tissue transplantation. The present study was conducted to investigate the effect of encapsulation on the secretory function of choroid plexus epithelial cells. Neonatal rat choroid plexus epithelial cells were primarily cultured. After 9 days of culture, the cells were distributed into two groups, and one group of cells was encapsulated in vitro. The initial culture conditions such as cell numbers and medium volumes were the same. Supernatants in the free and encapsulated choroid plexus epithelial cells were collected at the time points of day 1 through day 7. Quantitative determination of the BDNF and GDNF levels was performed by enzyme-linked immunosorbent assay to assess the secretory function of the cells in the two forms. Statistical analyses were performed using a Student t test. P<0.05 was set to indicate statistical significance. A very similar secretion pattern was observed in both groups. In the first 4 days of encapsulation, the release of BDNF and GDNF in the encapsulated cells was significantly lower than that in the free cells, while the difference diminished after day 5. This in vitro study demonstrates that the secretion of BDNF and GDNF in encapsulated choroid plexus epithelial cells is different from that in non-encapsulated cells in the early stage of encapsulation treatment, whereas it is similar in the later stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.