Abstract
The aim of this study was to investigate the influence of secreted protein acidic, rich in cysteine (SPARC) on the migration of human dental pulp (HDP) cells. Secreted protein acidic, rich in cysteine was applied in the lower chamber of the chemotaxis apparatus and migration was determined by counting the cells that migrated through the membrane. To determine the signaling pathway involved, cells were incubated with inhibitors for 30 min prior to the migration assay. The results indicated that SPARC induced HDP cell migration in a dose-dependent manner via extracellular signal-regulated kinase (ERK). The migration could be inhibited both by the anti-alphavbeta3 integrin antibody and by suramin, a non-selective growth factor receptor and G-protein coupled receptor antagonists. The anti-alphavbeta3 integrin antibody could also inhibit ERK activation, suggesting the possible role of alphavbeta3 integrin on the regulation of ERK and cell migration. Interestingly, both suramin and SB225002, another G-protein coupled receptor antagonist, suppressed ERK activation. Secreted protein acidic, rich in cysteine could act as a chemotactic factor and facilitate migration, possibly through the G-protein coupled receptor, alphavbeta3 integrin and ERK. The data support that SPARC could play a crucial role in dental pulp tissue repair by inducing dental pulp cell migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.