Abstract

Lysophosphatidic acid (LPA) plays a critical role in developing and maintaining chronic pain in various animal models. Previous studies have reported that cytosolic and calcium-independent phospholipase A2 (PLA2) is involved in the LPA receptor-mediated amplification of LPA production in the spinal dorsal horn (SDH) after nerve injury, while the involvement of secreted PLA2 (sPLA2) remains unclear. The present study revealed that only sPLA2 –III among 11 species of PLA2 showed a significant upregulation of gene expression in the SDH. Intraspinal injection of adeno-associated virus-miRNA targeting sPLA2-III prevented hyperalgesia and unique hypoalgesia in mice treated with partial sciatic nerve ligation. In addition, intrathecal treatment with antisense oligodeoxynucleotide or siRNA targeting sPLA2-III significantly reversed the established thermal hyperalgesia. In the high-throughput screening of sPLA2-III inhibitors from the chemical library, we identified two hit compounds. Through in vitro characterization of PLA2 inhibitor profiles and in vivo assessment of the anti-hyperalgesic effects of known PLA2 inhibitors as well as hit compounds, sPLA2-III was found to be a novel therapeutic target molecule for the treatment of Neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call