Abstract

The purpose of this study was to investigate invasion- and metastasis-related genes in gastric cancer. To this end, we used the transwell system to select a highly invasive subcell line from minimally invasive parent cells and compared gene expression in paired cell lines with high- and low-invasive potentials. Lysyl oxidase-like 2 (LOXL2) was overexpressed in the highly invasive subcell line. Immunohistochemical analysis revealed that LOXL2 expression was markedly increased in carcinoma relative to normal epithelia, and this overexpression in primary tumor was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Moreover, LOXL2 expression was further increased in lymph node metastases compared with primary cancer tissues. RNA interference-mediated knockdown and ectopic expression of LOXL2 showed that LOXL2 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo. Subsequent mechanistic studies showed that LOXL2 could activate both the Snail/E-cadherin and Src kinase/Focal adhesion kinase (Src/FAK) pathways. However, secreted LOXL2 induced gastric tumor cell invasion and metastasis exclusively via the Src/FAK pathway. Expression correlation analysis in gastric carcinoma tissues also revealed that LOXL2 promoted invasion via the Src/FAK pathway but not the Snail/E-cadherin pathway. We then evaluated secreted LOXL2 as a target for gastric carcinoma treatment and found that an antibody against LOXL2 significantly inhibited tumor growth and metastasis. Overall, our data revealed that LOXL2 overexpression, a frequent event in gastric carcinoma progression, contributes to tumor cell invasion and metastasis, and LOXL2 may be a therapeutic target for preventing and treating metastases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call