Abstract

Rationale: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator-induced lung injury. eCypA (extracellular CypA [cyclophilin A]) is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to coronavirus disease (COVID-19). Objectives: To explore the involvement of eCypA in the pathophysiology of ventilator-induced lung injury. Methods: Mice were ventilated with a low or high Vt for up to 3 hours, with or without blockade of eCypA signaling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to invitro stretching to explore the cellular source of eCypA, and CypA concentrations were measured in BAL fluid from patients with acute respiratory distress syndrome to evaluate the clinical relevance. Measurements and Main Results: High-Vt ventilation in mice provoked a rapid increase in soluble CypA concentration in the alveolar space but not in plasma. In vivo ventilation and invitro stretching experiments indicated the alveolar epithelium as the likely major source. In vivo blockade of eCypA signaling substantially attenuated physiological dysfunction, macrophage activation, and MMPs (matrix metalloproteinases). Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated concentrations of eCypA within BAL fluid. Conclusions: CypA is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. eCypA represents an exciting novel target for pharmacological intervention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call