Abstract
Abstract Synaptic vesicle (SV) exocytosis is orchestrated by protein machineries consisting of the SNARE complex, Ca2+ sensors, and their partners. Secretagogin (SCGN) is a Ca2+-binding protein involved in multiple forms of vesicle secretion. Although SCGN is implicated in multiple neurological disorders, its role in SV exocytosis in neurons remains unknown. Here, using knockout and knockdown techniques, we report that SCGN could regulate the asynchronous and spontaneous forms of excitatory but not inhibitory SV exocytosis in mouse hippocampal neurons. Furthermore, SCGN functioned in glutamate release via directly interacting with Doc2α, a high-affinity Ca2+ sensor specific for asynchronous and spontaneous SV exocytosis. Conversely, the interaction with SCGN is also required for Doc2α to execute its Ca2+ sensor function in SV release. Together, our study revealed that SCGN plays an important role in asynchronous and spontaneous glutamate release through its interaction with Doc2α.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.