Abstract

Recently, generative steganography that transforms secret information to a generated image has been a promising technique to resist steganalysis detection. However, due to the inefficiency and irreversibility of the secret-to-image transformation, it is hard to find a good trade-off between the information hiding capacity and extraction accuracy. To address this issue, we propose a secret-to-image reversible transformation (S2IRT) scheme for generative steganography. The proposed S2IRT scheme is based on a generative model, i.e., Glow model, which enables a bijective-mapping between latent space with multivariate Gaussian distribution and image space with a complex distribution. In the process of S2I transformation, guided by a given secret message, we construct a latent vector and then map it to a generated image by the Glow model, so that the secret message is finally transformed to the generated image. Owing to good efficiency and reversibility of S2IRT scheme, the proposed steganographic approach achieves both high hiding capacity and accurate extraction of secret message from generated image. Furthermore, a separate encoding-based S2IRT (SE-S2IRT) scheme is also proposed to improve the robustness to common image attacks. The experiments demonstrate the proposed steganographic approaches can achieve high hiding capacity (up to 4 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">bpp</i> ) and accurate information extraction (almost 100% accuracy rate) simultaneously, while maintaining desirable anti-detectability and imperceptibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.