Abstract

In this paper, we investigate the secrecy throughput for a full-duplex wireless powered communication network. A multi-antenna base station (BS) transmits energy towards nodes all the time and each node harvests energy prior to its transmission time slot. Nodes sequentially transmit their confidential information to the BS in presence of other nodes which are considered as potential eavesdroppers. We derive the secrecy rate and formulate the sum secrecy throughput optimization of all nodes. The optimization variables are the time slot duration and the BS beamforming during different transmission phases. The problem is non-convex and non-trivial. We propose a suboptimal approach in which the BS focuses its beamforming to blind the potential eavesdroppers (other nodes) during the information transmission phase, with which we then obtain the optimum beamforming in each time slot and its duration. We compare our algorithm with uniform time slot and uniform beamforming in different settings and demonstrate its superior performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.