Abstract

This paper studies the threat that an aerial eavesdropper can pose to terrestrial wireless communications, from an information-theoretic point of view. The achievable ergodic and the average $\epsilon $ -outage secrecy rates with no channel state information at the transmitter (i.e., with no CSIT) are analyzed for a transmitter–receiver pair on the ground, in the presence of an aerial eavesdropper which flies a random trajectory following a smooth turn (ST) mobility model in a three-dimensional (3D) space. The ST mobility model induces a uniform distribution (of the eavesdropper’s waypoints) within the considered 3D volume. Closed-form asymptotic approximations of the achievable secrecy rates are derived based on the almost sure convergence and non-trivial mathematical manipulations. Validated by simulations, our analysis is tight and reveals that the ground transmission is particularly vulnerable to aerial eavesdropping which can be carried out in a distance without being noticed. 3D spherical regions are identified, within which the secrecy rates vanish. This sheds useful insights to protect terrestrial wireless networks from aerial eavesdropping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.