Abstract

This paper considers physical-layer security protocols in multicast cognitive radio (CR) networks. In particular, we propose dual-hop cooperative decode-and-forward (DF) and randomize-and-forward (RF) schemes using partial relay selection method to enhance secrecy performance for secondary networks. In the DF protocol, the secondary relay would use same codebook with the secondary source to forward the source’s signals to the secondary destination. Hence, the secondary eavesdropper can employ either maximal-ratio combining (MRC) or selection combining (SC) to combine signals received from the source and the selected relay. In RF protocol, different codebooks are used by the source and the relay to forward the source message secretly. For each scheme, we derive exact and asymptotic closed-form expressions of secrecy outage probability (SOP), non-zero secrecy capacity probability (NzSCP) in both independent and identically distributed (i.i.d.) and independent but non-identically distributed (i.n.i.d.) networks. Moreover, we also give a unified formula in an integral form for average secrecy capacity (ASC). Finally, our derivations are then validated by Monte-Carlo simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call