Abstract
This study evaluates the intercept and outage probability of a decode-and-forward (DF) underlay cognitive radio network. The secondary users are subject to interference limitations from the primary network, with an eavesdropper tapping the second hop of cognitive network, when all the links undergo Rayleigh fading. For this threshold-based system, without assuming that the DF relays can always decode the message correctly, here the authors consider that only a set of relays whose SNR satisfies a predetermined threshold can decode the message successfully. The authors have obtained asymptotic analysis for both cases, when average SNRs of secondary source-relay and relay-destination links are balanced or unbalanced. The authors have shown that the desired secrecy rate, predetermined threshold, eavesdropper channel quality and interference power limitations significantly affects the secrecy performance of the cognitive radio system. They have investigated the outage and intercept probability of relay selection scheme, when either full instantaneous channel state information or statistical channel state information of all the links is available. They have shown that the optimal relay selection improves the performance of the multi-relay cognitive system, when the number of relays is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.