Abstract

We study, in this paper, the secrecy performance of a multi-user (MU) multiple-input single-output visible light communication broadcast channel with confidential messages. The underlying system model comprises $K +1$ nodes: a transmitter (Alice) equipped with $N$ fixtures of LEDs and $K$ spatially dispersed users, each equipped with a single photo-diode. The MU channel is modeled as deterministic and real-valued and assumed to be perfectly known to Alice, since all users are assumed to be active. We consider typical secrecy performance measures, namely, the max–min fairness, the harmonic mean, the proportional fairness, and the weighted fairness. For each performance measure, we derive an achievable secrecy rate for the system as a function of the precoding matrix. As such, we propose algorithms that yield the best precoding matrix for the derived secrecy rates, where we analyze their convergence and computational complexity. In contrast, what has been considered in the literature so far is zero-forcing (ZF) precoding, which is suboptimal. We present several numerical examples through which we demonstrate the substantial improvements in the secrecy performance achieved by the proposed techniques compared with those achieved by the conventional ZF. However, this comes at a slight increase in the complexity of the proposed techniques compared with ZF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.