Abstract

To provide system design insights for practical communication systems equipped with the frequency diverse array (FDA), this paper investigates the secrecy performance of FDA systems exploiting finite-alphabet inputs over fluctuating two-ray (FTR) fading channels. More specifically, closed-form expressions for the average secrecy rate (ASR) and the secrecy outage probability (SOP) are derived, while their correctness is confirmed by numerical simulations. In addition, we perform asymptotic analysis to quantify the secrecy performance gap between Gaussian and finite-alphabet inputs, for a sufficiently large average signal-to-noise ratio (SNR) of the main channel. Compared with Gaussian inputs-based research, this letter focuses on practical scenarios which sheds lights on properties of FDA systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.