Abstract

A secrecy energy efficiency optimization scheme for a multifunctional unmanned aerial vehicle (UAV) assisted mobile edge computing system is proposed to solve the computing power and security issues in the Internet-of-Things scenario. The UAV can switch roles between a computing UAV and jamming UAV based on the channel conditions. To ensure the security of the content and the system energy efficiency in the process of offloading computing tasks, the UAV trajectory, uplink transmit power, user scheduling, and offload task are jointly optimized, and an updated-rate assisted block coordinate descent (BCD) algorithm is used. Simulation results show that this scheme efficiently improves the secrecy performance and energy efficiency of the system. Compared with the benchmark scheme, the secrecy energy efficiency of the scheme is improved by 38.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.