Abstract
Secrecy by design is examined as an approach to information-theoretic secrecy. The main idea behind this approach is to design an information processing system from the ground up to be perfectly secure with respect to an explicit secrecy constraint. The principal technical contributions are decomposition bounds that allow the representation of a random variable <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> as a deterministic function of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$({S},{Z})$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> is a given fixed random variable and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Z$ </tex-math></inline-formula> is constructed to be independent of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> . Using the problems of privacy and lossless compression as examples, the utility cost of applying secrecy by design is investigated. Privacy is studied in the setting of the privacy funnel function previously introduced in the literature and new bounds for the regime of zero information leakage are derived. For the problem of lossless compression, it is shown that strong information-theoretic guarantees can be achieved using a reduced secret key size and a quantifiable penalty on the compression rate. The fundamental limits for both problems are characterized with matching lower and upper bounds when the secret <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> is a deterministic function of the information source <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.