Abstract

Employing unmanned aerial vehicles (UAVs) in millimeter-wave (mmWave) networks as relays has emerged as an appealing solution to assist remote or blocked communication nodes. In this case, the network security becomes a great challenge due to the presence of malicious eavesdroppers. In this paper, we perform a secrecy analysis for a UAV-based mmWave relaying network. We first investigate the relaying scheme without jamming where the UAV decodes and forwards the information from the source to the destination with malicious eavesdropping. Furthermore, to enhance the secrecy performance, we propose a cooperative jamming scheme via utilizing the destination and an external UAV to cooperatively disrupt the eavesdroppers at the two stages of relaying, respectively. Using the probability of line-of-sight (LoS) between the UAV and ground nodes, the three-dimensional (3D) antenna gain, and the Nakagami-m small-scale fading model, the secrecy outage probability (SOP) of the two schemes with and without jamming is analyzed. Closed-form expressions for the SOP of the two schemes are obtained by employing the Gauss-Chebyshev quadrature. Simulation results are presented to validate the theoretical expressions of SOP and to show the effectiveness of the proposed schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call