Abstract

In this paper, we investigate the secrecy performance of short-packet transmissions in ultra-reliable and low-latency communications (URLLC). We consider the scenario where a multi-antenna source communicates with a single-antenna legitimate receiver requiring ultra-high reliability and low latency, in the presence of a single-antenna eavesdropper. In order to safeguard URLLC, the source transmits the artificial noise (AN) signal together with the confidential signal to confuse the eavesdropper. We adopt a lower bound on the maximal secrecy rate as the secrecy performance metric for short-packet transmissions in URLLC, which takes the target decoding error probabilities at the legitimate receiver and the eavesdropper into account. Using this metric, we first derive a compact expression of the generalized secrecy outage probability (SOP). Then, we formally prove that the generalized SOP is a convex function with respect to the power allocation factor between the confidential signal and the AN signal. We further determine the optimal power allocation factor that minimizes the generalized SOP. The results presented in this work can be useful for designing new secure transmission schemes for URLLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.