Abstract

We present a detailed investigation of the second-order statistics of a twisted gaussian Schell-model (TGSM) beam propagating in turbulent atmosphere. Based on the extended Huygens-Fresnel integral, analytical expressions for the second-order moments of the Wigner distribution function of a TGSM beam in turbulent atmosphere are derived. Evolution properties of the second-order statistics, such as the propagation factor, the effective radius of curvature (ERC) and the Rayleigh range, of a TGSM beam in turbulent atmosphere are explored in detail. Our results show that a TGSM beam is less affected by the turbulence than a GSM beam without twist phase. In turbulent atmosphere the Rayleigh range doesn't equal to the distance where the ERC takes a minimum value, which is much different from the result in free space. The second-order statistics are closely determined by the parameters of the turbulent atmosphere and the initial beam parameters. Our results will be useful in long-distance free-space optical communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call