Abstract

We compared the number of spatial frequency and orientation mechanisms underlying first- versus second-order processing by measuring discrimination at detection threshold for first- and second-order Gabors to determine the smallest difference in spatial frequency and orientation that permits accurate discrimination at threshold. For second-order gratings, the number of channels is the same as for first-order gratings for spatial frequencies up to about 2 cpd; however, there are fewer second-order channels at higher spatial frequencies. In contrast, the number of labeled channels for orientation is the same for first- and second-order gratings. In conclusion, our findings provide evidence for distinct spatial frequency and orientation labeled detectors in second-order visual processing. We also show that, relative to first-order, there are fewer second-order channels processing higher spatial frequencies. This is consistent with a filter-rectify-filter scheme for second-order in which the second stage of filtering is at lower spatial frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.