Abstract

The second-order achievable rate region in Slepian-Wolf source coding systems is investigated. The concept of second-order achievable rates, which enables us to make a finer evaluation of achievable rates, has already been introduced and analyzed for general sources in the single-user source coding problem. Analogously, in this paper, we first define the second-order achievable rate region for the Slepian-Wolf coding system to establish the source coding theorem in the second-order sense. The Slepian-Wolf coding problem for correlated sources is one of typical problems in the multiterminal information theory. In particular, Miyake and Kanaya, and Han have established the first-order source coding theorems for general correlated sources. On the other hand, in general, the second-order achievable rate problem for the Slepian-Wolf coding system with general sources remains still open up to present. In this paper, we present the analysis concerning the second-order achievable rates for general sources, which are based on the information spectrum methods developed by Han and Verdu. Moreover, we establish the explicit second-order achievable rate region for independently and identically distributed (i.i.d.) correlated sources with countably infinite alphabets and mixtures of i.i.d. correlated sources, respectively, using the relevant asymptotic normality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.