Abstract

A series of highly efficient and thermally stable second-order nonlinear optical (NLO) dipolar donor-auxiliary donor-acceptor chromophores have been synthesised in which a hydrazono group and a pyrrole ring act as donor and auxiliary donor components, respectively, in combination with different aromatic and heteroaromatic acceptors. The new dyes have been systematically investigated by NMR spectroscopy, absorption spectroscopy, NLO measurements and thermal stability studies. NLO properties have been studied in detail by electro-optical absorption (EOA) and hyper-Rayleigh scattering (HRS) measurements in 1,4-dioxane and DMSO, respectively. The results originating from the two different methods have been compared and analysed in detail. We found that the NLO properties measured by the EOA and HRS methods correlate with each other and converge to reveal the dye with the acceptor 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran as the most efficient system. The unprecedented combination of a strong donor hydrazono group and the auxiliary donor effects of pi-excessive heteroaromatic rings afforded NLO chromophores with very high values (mu(g)beta0(EOA) up to 2038 x 10(-48) esu and beta(HRS) up to 3980 x 10(-30) esu at 1.5 microm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.