Abstract

Traditionally, finite automata theory has been used as a framework for the representation of possibly infinite sets of strings. In this work, we introduce the notion of second-order finite automata, a formalism that combines finite automata with ordered decision diagrams, with the aim of representing possibly infinite sets of sets of strings. Our main result states that second-order finite automata can be canonized with respect to the second-order language they represent. Using this canonization result, we show that sets of sets of strings represented by second-order finite automata are closed under the usual Boolean operations, such as union, intersection, difference and even under a suitable notion of complementation. Additionally, emptiness of intersection and inclusion are decidable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call