Abstract

Antagonists of NMDA (N-methyl-D-aspartate)-type glutamate receptors disrupt several forms of learning. Although this might indicate that NMDA-receptor-mediated processes are critical for synaptic plasticity, there may be other mechanisms by which NMDA-receptor antagonism could interfere with learning. For instance, fear conditioning would be blocked by microinfusion of the NMDA-receptor antagonist AP5 (D,L-2-amino-5-phosphonovalerate) into the basolateral amygdala if AP5 inhibited routine synaptic transmission, thereby reducing the ability of stimuli to activate amygdala neurons. In second-order fear conditioning, the reinforcer is a fear-eliciting conditioned stimulus rather than an unconditioned stimulus. Expression of conditioned fear is amygdala-dependent and so provides a behavioural assessment of the ability of the reinforcer to activate amygdala neurons in the presence of AP5. We report here that intra-amygdala AP5 actually enhances expression of conditioned fear to the conditioned stimulus that provides the reinforcement signal for second-order conditioning. Nevertheless, acquisition of second-order fear conditioning is completely blocked. Our findings strongly support the view that NMDA receptors are critically involved in synaptic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call