Abstract

The flow, heat and mass transfer at the stagnation point of a three-dimensional body in unsteady laminar compressible fluid with variable properties have been studied using a second-order boundary-layer theory when the basic potential flow admits selfsimilarity. Both nodal and saddle point regions have been considered. The equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is observed that the enhancement or reduction in the skin friction and heat transfer due to the second-order boundary layers depends upon the values of the parameter characterizing the unsteadiness in the free-stream velocity, the nature of the stagnation point, the variation of the density-viscosity product across the boundary layer, mass transfer and the wall temperature. The suction increases the skin friction and heat transfer whereas injection does the opposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.