Abstract
In this paper, a family of parameterized set-valued optimization problems, whose constraint set depends on a parameter, are considered. Some calculus rules are obtained for calculating the second-order contingent derivatives of the composition and sum of two set-valued mappings. Then, by using these calculus rules, some results concerning second-order sensitivity analysis are established, and an explicit expression for the second-order contingent derivative of the (weak) perturbation mapping in the set-valued optimization problems is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.