Abstract

Continuous-time lowpass signal can be perfectly reconstructed from its uniformly-spaced samples at the Nyquist rate. While sampling bandpass signal at the Nyquist rate usually needs higher rate than necessary, second-order sampling, which involves two uniform samplings of the signal at the same sampling rate with a time offset between the two sampling sets, can perfectly reconstruct a bandpass signal from sub-Nyquist rate samples. However, most findings in the literature focus on the theoretical analysis of second-order sampling without addressing its practical implementation. Moreover, bandpass signals are primarily restored at the original band positions. The frequency-translated version of signal is frequently required in typical applications. Conventional methods will recover the original signal first, then shift it to the band of interest. In this paper, a direct reconstruction of the second-order sampled arbitrary real-valued bandpass signal onto the baseband is discussed, and the uniformly-spaced samples at the baseband will be reconstructed. Reconstruction with frequency-shifting interpolants are designed. To enable second-order sampling in practice, the feasible time offsets are determined analytically. Also, the design of digital interpolants for reconstructing second-order sampled signals in baseband is included. Simulation results are included to confirm our theoretical calculations and show the superiority over several existing schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.