Abstract
In the sequential change-point detection problem for multi-stream data, it is assumed that there are M processes in a system and at some unknown time, an occurring event impacts one unknown local process in the sense of changing the distribution of observations from that affected local process. In this paper, we consider such problem under the sampling control constraint, in which one is able to take observations from only one of the local processes at each time step. Our objective is to design an adaptive sampling policy and a stopping time policy that is able to raise a correct alarm as quickly as possible subject to the false alarm and sampling control constraint. We develop an efficient sequential change-point detection algorithm under the sampling control that turns out to be second-order asymptotically optimal under the full data scenario. That is, with the sampling rate that is only 1/M of the full data scenario, our proposed algorithm has the same performance up to second-order as the optimal procedure under the full data scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.