Abstract

Second-harmonic (SH) reflection and diffraction measurements are performed, at the wavelengths of a Ti:sapphire laser on a GaAs/AlGaAs photonic crystal waveguide patterned with a square lattice, the basis consisting of rings of air in the dielectric matrix. The measured angles of diffracted SH beams agree with those predicted from nonlinear diffraction conditions. Results for reflected and diffracted SH intensities as a function of incidence angle, polarization, and pump wavelength show that, due to the low air fraction of the photonic crystal, the reflected one is dominated by the crystalline symmetry of GaAs, while the diffracted one is related to the photonic crystal structure. The large diffraction-to-reflection ratio points to the importance of nonlinear diffraction in photonic crystals. Preliminary measurements in the 1500 nm range reveal explicit features related to photonic modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.