Abstract

Scattering has usually been considered detrimental for optical focusing or imaging. Recently, more and more research has shown that strongly scattering materials can be utilized to focus coherent light by controlling or shaping the incident light. Here, purposeful focusing of second-harmonic waves, which are generated and scattered from nonlinear turbid media via feedback-based wavefront shaping, is presented. This Letter shows a flexible manipulation of both disordered linear and nonlinear scattering signals, indicating more controllable degrees of freedom for the description of turbid media. This technique also provides a possible way to an efficient transmission of nonlinear signal at a desired location in the form of a focal point or other patterns. With the combination of random nonlinear optics and wavefront shaping methods, more interesting applications can be expected in the future, such as nonlinear transmission matrix, multi-frequency imaging, and phase-matching-free nonlinear optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call