Abstract
The computer-generated holography technique is a powerful tool for three-dimensional display, beam shaping, optical tweezers, ultrashort pulse laser parallel processing, and optical encryption. We have realized nonlinear holography in ferroelectric crystals by utilizing spatial light modulators in our previous works. Here, we demonstrate an improved method to realize second-harmonic (SH) holographic imaging through a monolithic lithium niobate crystal based on binary computer-generated holograms (CGHs). The CGH patterns were encoded with the detour phase method and fabricated by femtosecond laser micromachining. By the use of the birefringence phase-matching process in the longitudinal direction, bright nonlinear holograms can be obtained in the far-field. The realization of SH holography through monolithic crystal opens wide possibilities in the field of high power laser nonlinear holographic imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.