Abstract

Quality of experience (QoE) of a secondary spectrum user is mainly governed by its spectrum utilization, the energy consumption in spectrum sensing and the impact of channel switching in a cognitive radio network. It can be enhanced by prediction of spectrum availability of different channels in the form of their idle times through historical information of primary users’ activity. Based on a reliable prediction scheme, the secondary user chooses the channel with the longest idle time for transmission of its data. In contrast to the existing method of statistical prediction, the use and applicability of supervised learning based prediction in various traffic scenarios have been studied in this paper. Prediction accuracy is investigated for three machine learning techniques, artificial neural network based Multilayer Perceptron (MLP), Support Vector Machines (SVM) with Linear Kernel and SVM with Gaussian Kernel, among which, the best one is chosen for prediction based opportunistic spectrum access. The results highlight the analysis of the learning techniques with respect to the traffic intensity. Moreover, a significant improvement in spectrum utilization of the secondary user with reduction in sensing energy and channel switching has been found in case of predictive dynamic channel allocation as compared to random channel selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.