Abstract

Floristic composition, community structure and soil moisture and nutrient contents in abandoned fields of different ages were analyzed to clarify the regenerative aspects of succession as a tool for vegetation restoration. The results indicated that secondary succession in this region can be interpreted as an auto-succession: there are main changes in species-relative abundance and species turnover. Annual or biennial species (e.g. Artemisia scoparia), acted as pioneers and strongly dominated the early stages. Then, they underwent a progressive decline, while forbs (e.g. Artemisia sacrorum) and grasses (e.g. Xanthium sibiricum) had their peak abundance at intermediate stages. Dwarf shrubs (e.g. Lespedeza dahurica) and short rhizome grass (e.g. Bothriochloa ischaemum) appeared at mid-succession stage and gradually increased in abundance during succession, becoming dominant at late stages. The first axis of detrended correspondence canonical analysis arranged the sites according to their fallow time, indicating a successional sere. The second axis, associated with diverging pathways of regeneration, correlated with topographic factors and soil moisture and nutrition. Structural divergence between plots increased as succession went on, attained the highest at the mid-succession stage, decreased at the late stage. Soil moisture and available phosphorus content decreased steadily with field age after their abandonment, whereas pools of organic matter, total and available nitrogen, potassium and total phosphorus increased with field age. The pace and direction of recovery of native vegetation and natural soil properties in these abandoned fields resembled classic old-field succession, which is a form of secondary succession that often serves as a template for guiding restoration efforts. Interface between the abandoned field soil and plant system was crucial to the above process. Our current study supported the generally accepted hypothesis in the succession literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.