Abstract

Constrained dipeptide mimetic templates were designed to mimic the secondary structure of peptides in a beta-strand conformation. Two templates corresponding to the D-Phe-Pro portion of the thrombin inhibitor D-Phe-Pro-ArgCH2Cl were synthesized and converted into nine alpha-ketoamide and alpha-ketoheterocycle inhibitors of thrombin. Additionally, a template corresponding to L-Phe-Pro was synthesized and converted to a thrombin inhibitor. The in vitro inhibition of thrombin by these compounds was determined, and those corresponding to the D-Phe-Pro were found to be more potent inhibitors than the L-Phe-Pro mimetic. The alpha-ketoamides were found to be more potent than the alpha-ketoheterocycles but had much slower on rates. By comparison of a series of alpha-ketoamide analogues, it is apparent that the there is a preference for binding of bulky hydrophobic substituents in the P' portion of the thrombin active site. Three of the inhibitors (MOL098, MOL144, and MOL174) were screened against a series of coagulation and anticoagulation enzymes and found to be selective for inhibition of the coagulation enzymes. Two of the inhibitors were tested in in vitro models of intestinal absorption and found to have low absorption potential. The compounds were then tested in vivo in both rats and primates, and one of them (MOL144) was approximately 25% absorbed in both species. This study has delineated the synthesis of constrained dipeptide beta-strand mimetics and validated the potential for compounds of this type as potent thrombin inhibitors and possible drug leads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.