Abstract

The secondary structure of a hydrophobic myelin protein (lipophilin), reconstituted with dimyristoylphosphatidylcholine or dimyristoylphosphatidylglycerol, was investigated by Fourier-transform infrared spectroscopy. Protein infrared spectra in the amide I region were analyzed quantitatively using resolution enhancement and band fitting procedures. Lipophilin in a phospholipid environment adopts a highly ordered secondary structure which at room temperature consists predominantly of alpha-helix (approximately 55%) and beta-type conformations (36%). The secondary structure of the protein is not affected by the lipid gel to liquid crystalline phase transition. Heating of the lipid-protein complex above approximately 35 degrees C results in a gradual decrease in alpha-helical content, accompanied by an increase in the amount of beta-structures. Lipophilin dissolved in 2-chloroethanol is, compared to the protein in a lipid environment, richer in the alpha-helical conformation but still contains a sizable amount of beta-structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.