Abstract
The relation of the coil-globule transition in macromolecules consisting of amphiphilic and hydrophilic monomer units to the radius of action of the interaction potential is investigated by the method of computer-assisted experiments. The internal structure of globules formed by such macromolecules is significantly dependent on the radius of action of the potential. In the case of the long-range potential, the globule is characterized by the blob structure, while in the case of the short-range potential, a quasi-helical structure forms. In this structure, the skeleton of a macromolecule forms a helical turn, and the direction of twisting may vary from one turn to another. The coil-globule transition in such macromolecules proceeds through formation of the necklace conformation from quasi-helical micelle beads. For sufficiently long macromolecules, the dimensions of such globules are linearly dependent on the degree of polymerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.