Abstract

The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime example that a secondary structure motif which is well-known from the solution phase (here: helices) can be formed in vacuo. We here revisit this conclusion for n=5,10,15, using density-functional theory (van der Waals corrected generalized gradient approximation), and gas-phase infrared vibrational spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide good qualitative agreement (theory vs. experiment) already in the harmonic approximation. For n=5, the lowest energy conformer is not a simple helix, but competes closely with \alpha-helical motifs at 300K. Close agreement between infrared spectra from experiment and ab initio molecular dynamics (including anharmonic effects) supports our findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call