Abstract

Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.