Abstract

Antibodies are crucial biomolecules that bring high therapeutic efficacy in medicine and accurate molecular detection in diagnosis. Many studies have been devoted to analyzing the antigen-antibody interaction from the importance of understanding the antibody recognition mechanism. However, most of the previous studies examined the characteristic of the antibody for interaction. It is also informative to clarify the significant antigen residues contributing to the binding. To characterize the molecular interaction of antigens, we computationally analyzed 350 antigen-antibody complex structures by molecular mechanics (MM) calculations and molecular dynamics (MD) simulations. Based on the MM calculations, the antigen residues contributing to the binding were extracted from all the 350 complexes. The extracted residues are located at the antigen-antibody interface and are responsible for making contact with the antibody. The appearances of the charged polar residues, Asp, Glu, Arg, and Lys, were noticeably large. In contrast, the populations of the hydrophobic residues, Leu, Val, and Ala, were relatively low. The appearance frequencies of the other amino acid residues were almost close to the abundance of general proteins of eukaryotes. The binding score indicated that the hydrophilic interaction was dominant at the antigen-antibody contact instead of the hydrophobic one. The positively charged residues, Arg and Lys, remarkably contributed to the binding compared to the negatively charged ones, Asp and Glu. Considerable contributions were also observed for the noncharged polar residues, Asn and Gln. The analysis of the secondary structures of the extracted antigen residues suggested that there was no marked difference in recognition by antibodies among helix, sheet, turn, and coil. A long helix of the antigen sometimes made contact with antibody complementarity-determining regions, and a large sheet also frequently covered the antibody heavy and light chains. The turn structure was the most popularly observed at the contact with antibody among 350 complexes. Three typical complexes were picked up for each of the four secondary structures. MD simulations were performed to examine the stability of the interfacial structures of the antigens for these 12 complex models. The alterations of secondary structures were monitored through the simulations. The structural fluctuations of the contact residues were low compared with the other domains of antigen molecules. No drastic conversion was observed for every model during the 100 ns simulation. The motions of the interfacial antigen residues were small compared to the other residues on the protein surface. Therefore, diverse molecular conformations are possible for antibody recognition as long as the target areas are polar, nonflexible, and protruding on the protein surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.