Abstract

We report an investigation into secondary mode suppression in single longitudinal mode (SLM) 1240 nm diamond Raman lasers. For a three-mirror V-shape standing-wave cavity incorporating an intra-cavity LBO crystal to suppress secondary modes, we achieved stable SLM output with a maximum output power of 11.7 W and a slope efficiency 34.9%. We quantify the level of χ(2) coupling necessary to suppress secondary modes including those generated by stimulated Brillouin scattering (SBS). It is found that SBS-generated modes often coincide with higher-order spatial modes in the beam profile and can be suppressed using an intracavity aperture. Using numerical calculations, it is shown that the probability for such higher-order spatial modes is higher for an apertureless V-cavity than in two-mirror cavities due its contrasting longitudinal mode-structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.