Abstract
Neutrons can be produced with low-energy ion accelerators for many applications, such as the characterisation of neutron detectors, the irradiation of biological samples and the study of the radiation damage in electronic devices. Moreover, accelerator-based neutron sources are under development for boron neutron capture therapy (BNCT). Thin targets are used for generating monoenergetic neutrons, while thick targets are usually employed for producing more intense neutron fields. The associated photon field produced by the target nuclei may have a strong influence on the application under study. For instance, these photons can play a fundamental role in the design of an accelerator-based neutron source for BNCT. This work focuses on the measurement of the photon field associated with neutrons that are produced by 4.0-6.8 MeV protons striking both a thin 7LiF target (for generating monoenergetic neutrons) and a thick beryllium target. In both cases, very intense photon fields are generated with energy distribution extending up to several MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.