Abstract

Ligands in ligand-protected metal clusters play a crucial role, not only because of their interaction with the metal core, but also because of the functionality they provide to the cluster. Here, we report the utilization of secondary phosphine oxide (SPO), as a new family of functional ligands, for the preparation of an undecagold cluster Au11-SPO. Different from the commonly used phosphine ligand (i.e., triphenylphosphine, TPP), the SPOs in Au11-SPO work as electron-withdrawing anionic ligands. While coordinating to gold via the phosphorus atom, the SPO ligand keeps its O atom available to act as a nucleophile. Upon photoexcitation, the clusters are found to inject holes into p-type semiconductors (here, bismuth oxide is used as a model), sensitizing the p-type semiconductor in a different way compared to the photosensitization of a n-type semiconductor. Furthermore, the Au11-SPO/Bi2O3 photocathode exhibits a much higher activity toward the hydrogenation of benzaldehyde than a TPP-protected Au11-sensitized Bi2O3 photocathode. Control experiments and density functional theory studies point to the crucial role of the cooperation between gold and the SPO ligands on the selectivity toward the hydrogenation of the C═O group in benzaldehyde.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.