Abstract
Alloying in metal castings is one of the principal methods of strengthening an alloy for various structural and functional applications, but very rarely does it modify an alloy’s elastic modulus. We report a methodology of combining isostructural Laves phases to form a multi-component, high symmetry, isotropic phase that was discovered to enhance the elastic modulus of a cast aluminum alloy to 91.5 ± 7.4 GPa. Flux grown single crystals of the rhombicuboctahedron phase (RCO), so named for the observed morphology, were used to enhance understanding of the structure and mechanical properties of the phase. The pure RCO phase’s structure and site occupancies were co-refined using x-ray and neutron diffraction. Dynamic nanomechanical testing of the cast alloy shows the primary RCO phase has a high, relatively isotropic, elastic modulus. This RCO containing aluminum alloy is found to have a specific modulus that exceeds that of the leading Al, Mg, Steel, and Ti alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.