Abstract

The purpose of this study was to determine the types, proportions, and energies of secondary particle interactions in a Compton camera (CC) during the delivery of clinical proton beams. The delivery of clinical proton pencil beams ranging from 70 to 200 MeV incident on a water phantom was simulated using Geant4 software (version 10.4). The simulation included a CC similar to the configuration of a Polaris J3 CC designed to image prompt gammas (PGs) emitted during proton beam irradiation for the purpose of in vivo range verification. The interaction positions and energies of secondary particles in each CC detector module were scored. For a 150-MeV proton beam, a total of 156,688(575) secondary particles per 108 protons, primarily composed of gamma rays (46.31%), neutrons (41.37%), and electrons (8.88%), were found to reach the camera modules, and 79.37% of these particles interacted with the modules. Strategies for using CCs for proton range verification should include methods of reducing the large neutron backgrounds and low-energy non-PG radiation. The proportions of interaction types by module from this study may provide information useful for background suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.