Abstract

Cortical bone remodeling is an ongoing process triggered by microdamage, where osteoclasts resorb existing bone and osteoblasts deposit new bone in the form of secondary osteons (Haversian systems). Previous studies revealed regional variance in Haversian systems structure and possibly material, between opposite cortices of the same bone. As bone mechanical properties depend on tissue structure and material, it is predicted that bone mechanical properties will vary in accordance with structural and material regional heterogeneity. To test this hypothesis, we analysed the structure, mineral content and compressive stiffness of secondary bone from the cranial and caudal cortices of the white-tailed deer proximal humerus. We found significantly larger Haversian systems and canals in the cranial cortex but no significant difference in mineral content between the two cortices. Accordingly, we found no difference in compressive stiffness between the two cortices and thus our working hypothesis was rejected. As the deer humerus is curved and thus likely subjected to bending during habitual locomotion, we expect that similar to other curved long bones, the cranial cortex of the deer humerus is likely subjected primarily to tensile strains and the caudal cortex is subject primarily to compressive strains. Consequently, our results suggest that strain magnitude (larger in compression) and sign (compression versus tension) affect the osteoclasts and osteoblasts differently in the basic multicellular unit. Our results further suggest that osteoclasts are inhibited in regions of high compressive strains (creating smaller Haversian systems) while the osteoid deposition and mineralization by osteoblasts is not affected by strain magnitude and sign.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call