Abstract
A series of 90 experiments were conducted in the UC Riverside/CE-CERT environmental chamber to evaluate the impact of water vapor and dissolved salts on secondary organic aerosol formation for cyclohexene ozonolysis. Water vapor (low – 30 ± 2% RH, medium – 46 ± 2% RH, high – 63 ± 2% RH) was found to directly participate in the atmospheric chemistry altering the composition of the condensing species, thus increasing total organic aerosol formation by ∼22% as compared to the system under dry (<0.1% RH) conditions. Hygroscopicity measurements also indicate that the organic aerosol composition is altered in the presence of gaseous water. These results are consistent with water vapor reacting with the crigee intermediate in the gas phase resulting in increased aldehyde formation. The addition of dissolved salts ((NH 4) 2SO 4, NH 4HSO 4, CaCl 2, NaCl) had minimal effect; only the (NH 4) 2SO 4 and NaCl were found to significantly impact the system with ∼10% increase in total organic aerosol formation. These results indicate that the organics may be partitioning to an outer organic shell as opposed to into the aqueous salt. Hygroscopicity measurements indicate that the addition of salts does not alter the aerosol composition for the dry or water vapor system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.