Abstract

Fungal pathogens of plants produce a diverse array of small molecules. Often referred to as secondary metabolites because they were thought to be dispensable for basic functions, they may indeed have central roles as signals for the fungal cell, and in interactions with the host. We have identified more than a dozen genes encoding nonribosomal peptide synthetases (NPS) in Cochliobolusheterostrophus, the agent of southern corn leaf blight. The aim of this project was to identify roles of these genes in stress responses and signaling. The first objective was to test a complete collection of C. heterostrophus nonribosomal peptide synthetase (NRPS)-encoding gene deletion mutant and wildtype (WT) strains for sensitivity to various agents of oxidative (ROS) and nitrosative (RNOS) stress, in vitro. The second objective and next step in this part of the project was to study the relevance of sensitivity to ROS and RNOS in the host pathogen interaction, by measuring the production of ROS and RNOS in planta, when plants are inoculated with wild type and mutant strains. A third objective was to study expression of any genes shown to be involved in sensitivity to ROS or RNOS, in vitro and in planta. Another objective was to determine if any of the genes involved in oxidative or nitrosative stress responses are regulated by components of signal transduction pathways (STP) that we have identified and to determine where mechanisms overlap. Study of the collection of nps mutants identified phenotypes relevant for virulence, development and oxidative stress resistance for two of the genes, NPS2 and NPS6. Mutants in genes related to RNOS stress have no virulence phenotypes, while some of those related to ROS stress have reduced virulence as well as developmental phenotypes, so we focused primarily on ROS stress pathways. Furthermore, the identification of NPS2 and NPS6 as encoding for NRPS responsible for siderophore biosynthesis lent a new focus to the project, regulation by Fe. We have not yet developed good methods to image ROS in planta and work in this direction is continuing. We found that NPS6 expression is repressed by Fe, responding over the physiological Fe concentration range. Studying our collection of mutants, we found that conserved MAPK and G protein signal transduction pathways are dispensable for Fe regulation of NPS6, and initiated work to identify other pathways. The transcription factor SreA is one candidate, and is responsible for part, but not all, of the control of NPS6 expression. The results of this project show that the pathogen contends with oxidative stress through several signaling pathways. Loss of the siderophore produced by Nps6 makes the fungus sensitive to oxidative stress, and decreases virulence, suggesting a central role of the ability to sequester and take up extracellular iron in the host-pathogen interaction. Siderophores, and manipulation of Fe levels, could be targets for new strategies to deal with fungal pathogens of maize and other plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call