Abstract

Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.

Highlights

  • EVOLUTIONARY AND ECOLOGICAL BACKGROUND Plants are sessile organisms which cannot run away when attacked by an herbivore nor do they have an immune system to combat infesting parasites, bacteria, fungi, or viruses

  • Mechanisms include: (1) Activation of ATPbinding cassette (ABC) transporters, such as p-gp, which pump out lipophilic compounds that have entered a cell, (2) activation of cytochrome p450 oxidases (CYP) which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) activation of glutathione transferase (GST), which can conjugate xenobiotics with glutathione

  • Breast cancer resistance protein and P-gp are highly expressed at the apical membrane of blood–brain barrier (BBB), placenta, liver, intestine, and other organs (Schinkel and Jonker, 2003)

Read more

Summary

INTRODUCTION

EVOLUTIONARY AND ECOLOGICAL BACKGROUND Plants are sessile organisms which cannot run away when attacked by an herbivore nor do they have an immune system to combat infesting parasites, bacteria, fungi, or viruses. SM which interfere with proteins, such as polyphenols, biomembranes (saponins and other lipophilic terpenoids), or DNA (alkylating or intercalating mutagens) affect a wider range of organisms, including animals and microbes. A large number of SM have lipophilic properties which enable them to readily pass biomembranes in target organisms by simple diffusion. These SM are dangerous for the producing plants. They are usually stored in dead tissue away from living cells, such as resin ducts, oil cells, trichomes, or cuticles (Wink, 2010b). The absorption of polar SM is usually slower or does not www.frontiersin.org

Number of structures
Triterpenes Aegicerin
Several species of Fabaceae
Formononetin and other isoflavones Galangin Genistein and derivatives
Several species Several species
Bauerella australiana
Glaucine Harmine
Quinine Rescinnamine Reserpine
Voacamine Yohimbine
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.